Discrete Mathematics and Its Applications

£9.9
FREE Shipping

Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications

RRP: £99
Price: £9.9
£9.9 FREE Shipping

In stock

We accept the following payment methods

Description

Theoretical computer science includes areas of discrete mathematics relevant to computing. It draws heavily on graph theory and mathematical logic. Included within theoretical computer science is the study of algorithms and data structures. Computability studies what can be computed in principle, and has close ties to logic, while complexity studies the time, space, and other resources taken by computations. Automata theory and formal language theory are closely related to computability. Petri nets and process algebras are used to model computer systems, and methods from discrete mathematics are used in analyzing VLSI electronic circuits. Computational geometry applies algorithms to geometrical problems and representations of geometrical objects, while computer image analysis applies them to representations of images. Theoretical computer science also includes the study of various continuous computational topics. Analytic combinatorics concerns the enumeration (i.e., determining the number) of combinatorial structures using tools from complex analysis and probability theory. In contrast with enumerative combinatorics which uses explicit combinatorial formulae and generating functions to describe the results, analytic combinatorics aims at obtaining asymptotic formulae. The time scale calculus is a unification of the theory of difference equations with that of differential equations, which has applications to fields requiring simultaneous modelling of discrete and continuous data. Another way of modeling such a situation is the notion of hybrid dynamical systems.

Discrete geometry and combinatorial geometry are about combinatorial properties of discrete collections of geometrical objects. A long-standing topic in discrete geometry is tiling of the plane. In algebraic geometry, the concept of a curve can be extended to discrete geometries by taking the spectra of polynomial rings over finite fields to be models of the affine spaces over that field, and letting subvarieties or spectra of other rings provide the curves that lie in that space. Although the space in which the curves appear has a finite number of points, the curves are not so much sets of points as analogues of curves in continuous settings. For example, every point of the form V ( x − c ) ⊂ Spec ⁡ K [ x ] = A 1 {\displaystyle V(x-c)\subset \operatorname {Spec} K[x]=\mathbb {A} Design theory is a study of combinatorial designs, which are collections of subsets with certain intersection properties. Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic. [1] [2] [3] By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets [4] (finite sets or sets with the same cardinality as the natural numbers). However, there is no exact definition of the term "discrete mathematics". [5] Graphs such as these are among the objects studied by discrete mathematics, for their interesting mathematical properties, their usefulness as models of real-world problems, and their importance in developing computer algorithms. Although the main objects of study in discrete mathematics are discrete objects, analytic methods from "continuous" mathematics are often employed as well. There are many concepts and theories in continuous mathematics which have discrete versions, such as discrete calculus, discrete Fourier transforms, discrete geometry, discrete logarithms, discrete differential geometry, discrete exterior calculus, discrete Morse theory, discrete optimization, discrete probability theory, discrete probability distribution, difference equations, discrete dynamical systems, and discrete vector measures. Logical formulas are discrete structures, as are proofs, which form finite trees [10] or, more generally, directed acyclic graph structures [11] [12] (with each inference step combining one or more premise branches to give a single conclusion). The truth values of logical formulas usually form a finite set, generally restricted to two values: true and false, but logic can also be continuous-valued, e.g., fuzzy logic. Concepts such as infinite proof trees or infinite derivation trees have also been studied, [13] e.g. infinitary logic.

Main article: Graph theory Graph theory has close links to group theory. This truncated tetrahedron graph is related to the alternating group A 4.Algebraic structures occur as both discrete examples and continuous examples. Discrete algebras include: Boolean algebra used in logic gates and programming; relational algebra used in databases; discrete and finite versions of groups, rings and fields are important in algebraic coding theory; discrete semigroups and monoids appear in the theory of formal languages. In discrete calculus and the calculus of finite differences, a function defined on an interval of the integers is usually called a sequence. A sequence could be a finite sequence from a data source or an infinite sequence from a discrete dynamical system. Such a discrete function could be defined explicitly by a list (if its domain is finite), or by a formula for its general term, or it could be given implicitly by a recurrence relation or difference equation. Difference equations are similar to differential equations, but replace differentiation by taking the difference between adjacent terms; they can be used to approximate differential equations or (more often) studied in their own right. Many questions and methods concerning differential equations have counterparts for difference equations. For instance, where there are integral transforms in harmonic analysis for studying continuous functions or analogue signals, there are discrete transforms for discrete functions or digital signals. As well as discrete metric spaces, there are more general discrete topological spaces, finite metric spaces, finite topological spaces. Partition theory studies various enumeration and asymptotic problems related to integer partitions, and is closely related to q-series, special functions and orthogonal polynomials. Originally a part of number theory and analysis, partition theory is now considered a part of combinatorics or an independent field.



  • Fruugo ID: 258392218-563234582
  • EAN: 764486781913
  • Sold by: Fruugo

Delivery & Returns

Fruugo

Address: UK
All products: Visit Fruugo Shop