276°
Posted 20 hours ago

My Weigh T3 400 Triton T3 400 Gram x 0.01 Digital Pocket Scale Black

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

The proposed capture of Triton may explain several features of the Neptunian system, including the extremely eccentric orbit of Neptune's moon Nereid and the scarcity of moons as compared to the other giant planets. Triton's initially eccentric orbit would have intersected the orbits of irregular moons and disrupted those of smaller regular moons, dispersing them through gravitational interactions. [4] [5] Triton has a tenuous nitrogen atmosphere, with trace amounts of carbon monoxide and small amounts of methane near its surface. [11] [42] [43] Like Pluto's atmosphere, the atmosphere of Triton is thought to have resulted from the evaporation of nitrogen from its surface. [27] Its surface temperature is at least 35.6K (−237.6°C) because Triton's nitrogen ice is in the warmer, hexagonal crystalline state, and the phase transition between hexagonal and cubic nitrogen ice occurs at that temperature. [44] An upper limit in the low 40s (K) can be set from vapor pressure equilibrium with nitrogen gas in Triton's atmosphere. [45] This is colder than Pluto's average equilibrium temperature of 44K (−229.2°C). Triton's surface atmospheric pressure is only about 1.4–1.9 Pa (0.014–0.019 mbar). [7] Clouds observed above Triton's limb by Voyager 2.

MUSE Thermostatic mixer shower and diverter - Shower Spares

One of the largest cryovolcanic features found on Triton is Leviathan Patera, [57] a caldera-like feature roughly 100km in diameter seen near the equator. Surrounding this caldera is a volcanic dome that stretches for roughly 2,000km along its longest axis, indicating that Leviathan is the second largest volcano in the solar system by area, after Alba Mons. This feature is also connected to two enormous cryolava lakes seen northwest of the caldera. Because the cryolava on Triton is believed to be primarily water ice with some ammonia, these lakes would qualify as stable bodies of surface liquid water while they were molten. This is the first place such bodies have been found apart from Earth, and Triton is the only icy body known to feature cryolava lakes, although similar cryomagmatic extrusions can be seen on Ariel, Ganymede, Charon, and Titan. [58]

Due to constant erasure and modification by ongoing geological activity, impact craters on Triton's surface are relatively rare. A census of Triton's craters imaged by Voyager 2 found only 179 that were incontestably of impact origin, compared with 835 observed for Uranus's moon Miranda, which has only three percent of Triton's surface area. [70] The largest crater observed on Triton thought to have been created by an impact is a 27-kilometer-diameter (17mi) feature called Mazomba. [70] [71] Although larger craters have been observed, they are generally thought to be volcanic. [70]

My Weigh T3 400 Triton T3 400 Gram x 0.01 Digital Pocket

Cantaloupe terrain, which is mostly dirty water ice, is only known to exist on Triton. It contains depressions 30–40km in diameter. [68] The depressions ( cavi) are probably not impact craters because they are all of the similar size and have smooth curves. The leading hypothesis for their formation is diapirism, the rising of "lumps" of less dense material through a stratum of denser material. [7] [69] Alternative hypotheses include formation by collapses, or by flooding caused by cryovolcanism. [68] Impact craters [ edit ] Tuonela Planitia (left) and Ruach Planitia (center) are two of Triton's cryovolcanic "walled plains". The paucity of craters is evidence of extensive, relatively recent, geologic activity. Before the flyby of Voyager 2, astronomers suspected that Triton might have liquid nitrogen seas and a nitrogen/methane atmosphere with a density as much as 30% that of Earth. Like the famous overestimates of the atmospheric density of Mars, this proved incorrect. As with Mars, a denser atmosphere is postulated for its early history. [72] All the geysers observed were located between 50° and 57°S, the part of Triton's surface close to the subsolar point. This indicates that solar heating, although very weak at Triton's great distance from the Sun, plays a crucial role. It is thought that the surface of Triton probably consists of a translucent layer of frozen nitrogen overlying a darker substrate, which creates a kind of "solid greenhouse effect". Solar radiation passes through the thin surface ice sheet, slowly heating and vaporizing subsurface nitrogen until enough gas pressure accumulates for it to erupt through the crust. [7] [46] A temperature increase of just 4 K above the ambient surface temperature of 37K could drive eruptions to the heights observed. [59] Although commonly termed "cryovolcanic", this nitrogen plume activity is distinct from Triton's larger-scale cryovolcanic eruptions, as well as volcanic processes on other worlds, which are powered by internal heat. CO 2 geysers on Mars are thought to erupt from its south polar cap each spring in the same way as Triton's geysers. [62] Polar cap, plains and ridges [ edit ] Triton's bright south polar cap above a region of cantaloupe terrainTriton was discovered by British astronomer William Lassell on October 10, 1846, [17] just 17days after the discovery of Neptune. When John Herschel received news of Neptune's discovery, he wrote to Lassell suggesting he search for possible moons. Lassell discovered Triton eight days later. [17] [18] Lassell also claimed for a period [h] to have discovered rings. [19] Although Neptune was later confirmed to have rings, they are so faint and dark that it is not plausible he saw them. A brewer by trade, Lassell spotted Triton with his self-built 61cm (24in) aperture metal mirror reflecting telescope (also known as the "two-foot" reflector). [20] This telescope was donated to the Royal Observatory, Greenwich in the 1880s, but was eventually dismantled. [20] Triton's orbit is associated with two tilts, the obliquity of Neptune's rotation to Neptune's orbit, 30°, and the inclination of Triton's orbit to Neptune's rotation, 157° (an inclination over 90° indicates retrograde motion). Triton's orbit precesses forward relative to Neptune's rotation with a period of about 678 Earth years (4.1 Neptunian years), [4] [5] making its Neptune-orbit-relative inclination vary between 127° and 173°. That inclination is currently 130°; Triton's orbit is now near its maximum departure from coplanarity with Neptune's. Triton is the seventh-largest moon and sixteenth-largest object in the Solar System and is modestly larger than the dwarf planets Pluto and Eris. It is also the largest retrograde moon in the solar system. It comprises more than 99.5% of all the mass known to orbit Neptune, including the planet's rings and thirteen other known moons, [j] and is also more massive than all known moons in the Solar System smaller than itself combined. [k] Also, with a diameter 5.5% that of Neptune, it is the largest moon of a gas giant relative to its planet in terms of diameter, although Titan is bigger relative to Saturn in terms of mass (the ratio of Triton's mass to that of Neptune is approximately 1:4788). It has a radius, density (2.061 g/cm 3), temperature and chemical composition similar to that of Pluto. [33] The first attempt to measure the diameter of Triton was made by Gerard Kuiper in 1954. He obtained a value of 3,800km. Subsequent measurement attempts arrived at values ranging from 2,500 to 6,000km, or from slightly smaller than the Moon (3,474.2km) to nearly half the diameter of Earth. [73] Data from the approach of Voyager 2 to Neptune on August 25, 1989, led to a more accurate estimate of Triton's diameter (2,706km). [74]

Triton documentation - triton-lang.org Fused Attention — Triton documentation - triton-lang.org

The few impact craters on Triton are almost all concentrated in the leading hemisphere—that facing the direction of the orbital motion—with the majority concentrated around the equator between 30° and 70° longitude, [70] resulting from material swept up from orbit around Neptune. [54] Because it orbits with one side permanently facing the planet, astronomers expect that Triton should have fewer impacts on its trailing hemisphere, due to impacts on the leading hemisphere being more frequent and more violent. [70] Voyager 2 imaged only 40% of Triton's surface, so this remains uncertain. However, the observed cratering asymmetry exceeds what can be explained based on the impactor populations, and implies a younger surface age for the crater-free regions (≤ 6million years old) than for the cratered regions (≤ 50million years old). [53] Observation and exploration [ edit ] NASA illustration detailing the studies of the proposed Trident mission Neptune (top) and Triton (bottom) three days after flyby of Voyager 2Triton's revolution around Neptune has become a nearly perfect circle with an eccentricity of almost zero. Viscoelastic damping from tides alone is not thought to be capable of circularizing Triton's orbit in the time since the origin of the system, and gas drag from a prograde debris disc is likely to have played a substantial role. [4] [5] Tidal interactions also cause Triton's orbit, which is already closer to Neptune than the Moon is to Earth, to gradually decay further; predictions are that 3.6billion years from now, Triton will pass within Neptune's Roche limit. [26] This will result in either a collision with Neptune's atmosphere or the breakup of Triton, forming a new ring system similar to that found around Saturn. [26] Capture [ edit ] The Kuiper belt (green), in the Solar System's outskirts, is where Triton is thought to have originated. Surface gravity derived from the mass m, the gravitational constant G and the radius r: G m r 2 {\displaystyle {\frac {Gm}{r Close up of the volcanic province of Leviathan Patera, the caldera in the center of the image. Several pit chains extend radially from the caldera to the right of the image, while the smaller of the two cryolava lakes is seen to the upper left. Just off-screen to the lower left is a fault zone aligned radially with the caldera, indicating a close connection between the tectonics and volcanology of this geologic unit.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment