276°
Posted 20 hours ago

Gresham GI Special Edition Stainless Steel Tonnaeu Case White and Blue Colourway Watch G1-0001-WHT

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

If you’d like to read more about Wren’s life, two very good places to start are Lisa Jardine’s 2002 biography On a Grander Scale, and Adrian Tinniswood’s 2001 biography His Invention so Fertile. The story of the y = x 3approximation to the perfect masonry dome, and a derivation of the correct equation, is given in Hooke's Cubico-Parabolical Conoid, by Jacques Heyman, in Notes and Records of the Royal Society of London, Vol. 52, No. 1 (Jan., 1998), pp. 39-50 https://www.jstor.org/stable/532075. How a watch keeps time is vital to how accurate its timekeeping is. Quartz movement watches are often prized for their accuracy, while a well-crafted automatic watch is a true investment piece. Prefer something vintage? Browse our collection of stunning manual watches. Ramsdens Watch Services Neither of these demonstrations have been preserved, and it’s not clear if they were mathematical proofs or the outcomes of physical experiments. However, some years later Hooke did write down in anagram form a phrase which indicates that he had determined the solution to the problem (even if he had not necessarily found a mathematical proof): it’s a catenary. A catenary is the curve made by a chain or rope allowed to hang freely between two points. Galileo had talked about this problem; he thought that to a good approximation the solution was a parabola, but it was discovered later to be a subtly different curve. Hooke found that the equations describing the forces acting on a hanging chain are equivalent to those describing the forces acting on an arch (this time not tension and gravity but compression and gravity). That would imply that the most stable, strongest shape for an arch is a catenary, but upside-down. You can make the actual curve of the arch a slightly different shape but the line of thrust is still a catenary curve, so that needs to be part of the structure of the arch. This means the shape that requires the least amount of material, the most efficient shape, is indeed a catenary. So, we now have an outer hemispherical dome with a gigantic lantern, that can’t support itself and needs some kind of internal structure. To hide that internal structure, Wren built an inner dome whose cross section is a catenary, fitting in very nicely with other elements of the internal design.

The portrait of Christopher Wren is from the National Portrait Gallery https://www.npg.org.uk/collections/search/portrait/mw06939/Sir-Christopher-Wren We remember Christopher Wren as a great architect. But he was so much more. Today I’m going to tell you about Christopher Wren the mathematician. We’ll look at his work on curves including spirals and ellipses, and we’ll see some of the mathematics behind his most impressive architectural achievement – the dome of St Paul’s Cathedral. In the course of my exploration I will not simply confine myself to English or even British history, for Britain was connected to Europe and the wider world in multifarious ways during the nineteenth and early twentieth centuries. Anyone seeking an illustration of this could do worse than to cast an eye over the Table of Contents of A. N. Wilson'sThe Victorians, with its chapters on France, Germany and Italy, India, Jamaica and Africa, and its coverage of Wagner, Dostoevsky and Tolstoy. Many of the ideas, beliefs and experiences of the Victorians were shared by people in a variety of different countries, from Russia to America, Spain to Scandinavia, and were reflected in the literature and culture of the nineteenth century, up to the outbreak of the First World War. Beyond this, overseas Empire loomed ever larger in the consciousness of the Victorians, until it came to express itself in an ideology, the ideology of imperialism. Loft of Casa Batlló, designed by Antoni Gaudí, image by Francois Lagunas, CC BY-SA 3.0, via Wikimedia Commons https://en.wikipedia.org/wiki/Casa_Batll%C3%B3 The Genesis GI Features a hybrid Steel and Aluminium Exo frame chassis which embodies the exposed skeleton custom automatic movement with self-winding mechanism. The case is seamlessly integrated on a custom designed high density rubber strap.We’ve got a huge range of 100% genuine luxury watches from leading brands such as Rolex, Tag Heuer, Omega and Breitling, all individually assessed and valued by our expert buyers. Wren was educated at Oxford and later held the Savilian chair in astronomy there, as well as his Gresham professorship in London. These roles and others place him right at the heart of an exceptionally active and exciting community of scientific thinkers. The group around Gresham College included not just Wren as Gresham Professor of Astronomy but also Robert Hooke, who was Gresham Professor of Geometry at a similar time. Wren was not just a founder member of the Royal Society (which arose out of weekly meetings at Gresham beginning in November 1660) but served as its president. And he was an active contributor in meetings – if perhaps not in subscription fees, which he had to be chased to pay up. In short, he was a key contributor to the scientific and mathematical thought of the time. We can see this, not just from his own work, but by the amount he is mentioned in the writing of others, giving credit to him for certain ideas. For example, when Isaac Newton introduces the idea of a force governed by an inverse square law in his Principia Mathematica, he says that one example is the force governing the motion of the planets “as Sir Christopher Wren, Dr. Hooke, and Dr. Halley have severally observed”. Wren’s name appears seven times in the Principia. In fact, the leading architectural historian John Summerson (1904-1992) wrote that if Wren had died at thirty, he would still have been a “figure of some importance in English scientific thought, but without the word “architecture” occurring once in his biographies”. Wren’s contributions to astronomy are the subject of a lecture by the current Gresham Professor of Astronomy, Katherine Blundell, which you can watch online: today I want to explore his mathematical contributions.

The following paper is a helpful summary of Wren’s mathematical work which gives detail of the original sources, for example the places in Wallis’s Tractatus de Cycloide where he explain’s Wren’s rectification of the cycloid and solution to Kepler’s problem. Wren the Mathematician, D.T. Whiteside, Notes & Records of the Royal Society, 15, pp107-111 (1960). This course of lectures looks at the Victorians not just in Britain but in Europe and the wider world. 'Victorian' has come to stand for a particular set of values, perceptions and experiences, many of which were shared by people in a variety of different countries, from Russia to America, Spain to Scandinavia and reflected in the literature and culture of the nineteenth century, up to the outbreak of the First World War. The focus of the lectures will be on identifying and analysing six key areas of the Victorian experience, looking at them in international perspective. The lectures will be illustrated and the visual material will form a key element in the presentations. Throughout the series, we will be asking how far, in an age of growing nationalism and class conflict, the experiences of the Victorian era were common to different classes and countries across Europe and how far the political dominance of Britain, the world superpower of the day, was reflected in the spread of British culture and values to other parts of the world. Yet it seems indisputable that 'Victorian' has come to stand for a particular set of values, perceptions and experiences. On the other hand, historians are deeply divided about what these were. Certainly as G. M. Trevelyan remarked half a century ago, referring obliquely to Lytton Strachey's debunking of these values: 'The period of reaction against the nineteenth century is over; the era of dispassionate historical valuation of it has begun.' And, he added, perhaps as a warning: 'the ideas and beliefs of the Victorian era...were various and mutually contradictory, and cannot be brought together under one or two glib generalizations'. Spiral-like shapes crop up regularly in nature. There’s a particular kind of spiral, called a logarithmic spiral that was familiar to Wren. Logarithmic spirals were first mentioned by the German artist and engraver Albrecht Durer, and studied in great detail by the mathematician Jacob Bernoulli – he gave them the name “spira mirabilis”, or “miraculous spiral”. In a logarithmic spiral, the distance r from the centre is a power of the angle we’ve moved through (or conversely the angle is a logarithm of the distance, hence the name). This means that the gap between consecutive rings of the spiral is increasing each time. One example of a logarithmic spiral, shown below, is r= 2 θ/360(where we are measuring our angles in degrees). With every complete revolution, the distance of the spiral from the origin doubles. It crosses the x -axis at 1, 2, 4, 8, 16 and so on. So, Wren and Hooke’s best guess for the ideal shape of a masonry dome is a cubic curve in cross-section. They took the part of the curve y= x 3 for positive x , and rotated it around a vertical axis to create what Hooke called a “cubico-parabolical conoid”. And it’s this shape that Wren used for the middle dome, which supports the hemispherical outer dome and its central lantern. By the way, if you stand inside the cathedral and look up, you think you can see through the dome to the lantern, but in fact what you are seeing is a painting of the lantern on the base of the middle dome! In summary, the dome of St Paul’s is in fact a triple dome: a catenary inside a cubic curve inside a hemisphere. Pretty amazing, and a tour de force of Wren’s mathematical and architectural skill.In February 1658, mathematicians in England received a challenge from France. It read “Jean de Montfort [possibly a pseudonym for Pascal] greatly desires that those distinguished gentlemen, the Professors of Mathematics, and others in England renowned for mathematical skill, may condescend to resolve this problem”. The problem was, given an ellipse of known dimensions, and a chord of the ellipse crossing the major axis at a known point and angle, to find the lengths of the segments of that chord. Wren solved the problem, and then in return challenged the mathematicians of France to solve another problem about ellipses, which I’ll tell you about now. When buying a luxury watch, the brand is a key factor. Whether you're a loyal collector or looking for fashion-forward, we have a wide range of designer watches from leading brands such as Rolex, Tag Heuer, Omega and Breitling. All of our watches are individually assessed and valued by our expert buyers to ensure pristine quality. Shop by Watch Movement

All logarithmic spirals are self-similar, in that they retain precisely the same shape as they grow. In nature, if we think of how plants and animals grow, if they are growing out from a central point at a fixed rate, as happens with something like a Nautilus shell, then the outer parts continue to grow while they expand out from the centre. Logarithmic spirals allow for this to happen while keeping the same shape. The spiraling makes room for new growth. The three-dimensional version of a logarithmic spiral that Wren studied is just the right solution for shells, and is achieved in nature by one side of the structure growing at a faster rate than another. By varying the parameters in the general equation for a solid logarithmic spiral, many different shell-like shapes can be created. Wren’s ideas continue to inspire. In 2021, a team at Monash University came up with a “power cone” construction generalizing the cone-to-spiral idea (and Wren is referenced extensively in their article) that gives a mathematical basis for the formation of animal teeth, horns, claws, beaks and other sharp structures.Have a designer watch you want to sell? Or, have your eyes on a particular brand and want to part exchange? Ramsdens is happy to help. Learn More About Watches Markhor Screw-horned Goat, by Rufus46, Boreray Ram, by Gibbja, Giant Eland by Greg Hume, all CC BY-SA 3.0, via Wikimedia Commons The scale of the British Empire and the dominance of British industry ensured that in 1890 nearly two-thirds of the telegraph lines in the world were owned by British companies, which controlled 156,000 kilometers of cables. But the influence of the system extended far beyond the British Empire. The growth of the new global communication networks meant, as the writer Max Nordau noted in 1892, that the simplest villager now had a wider geographical horizon than a head of government a century before. If he read a paper he 'interests himself simultaneously in the issue of a revolution in Chile, a bush-war in East Africa, a massacre in North China, a famine in Russia'. At the beginning of the nineteenth century, communication was slow, even relatively short journeys were uncertain and time-consuming, and people were dependant on the forces of nature for energy; this lecture charts the development of new modes of communication, from the railway to the radio, the telegraph to the telephone, the steamship to the motor-car and examines their efforts on perceptions of time and space. This, in essence, is what I propose to do in this series of six lectures, beginning today and stretching over the next few months. I'm not going to attempt a comprehensive survey of the Victorians, or offer any kind of chronological narrative, though change over time will indeed be one of my themes.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment